A functional peptidyl-tRNA hydrolase, ICT1, has been recruited into the human mitochondrial ribosome

نویسندگان

  • Ricarda Richter
  • Joanna Rorbach
  • Aleksandra Pajak
  • Paul M Smith
  • Hans J Wessels
  • Martijn A Huynen
  • Jan A Smeitink
  • Robert N Lightowlers
  • Zofia M Chrzanowska-Lightowlers
چکیده

Bioinformatic analysis classifies the human protein encoded by immature colon carcinoma transcript-1 (ICT1) as one of a family of four putative mitochondrial translation release factors. However, this has not been supported by any experimental evidence. As only a single member of this family, mtRF1a, is required to terminate the synthesis of all 13 mitochondrially encoded polypeptides, the true physiological function of ICT1 was unclear. Here, we report that ICT1 is an essential mitochondrial protein, but unlike the other family members that are matrix-soluble, ICT1 has become an integral component of the human mitoribosome. Release-factor assays show that although ICT1 has retained its ribosome-dependent PTH activity, this is codon-independent; consistent with its loss of both domains that promote codon recognition in class-I release factors. Mutation of the GGQ domain common to ribosome-dependent PTHs causes a loss of activity in vitro and, crucially, a loss of cell viability, in vivo. We suggest that ICT1 may be essential for hydrolysis of prematurely terminated peptidyl-tRNA moieties in stalled mitoribosomes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ICT1 comes to the rescue of mitochondrial ribosomes.

In the current issue, Richter et al (2010) show that mammalian mitochondrial ribosomes contain a ribosomal protein (ICT1) that acts as a ribosome-dependent, codonindependent peptidyl-tRNA hydrolase. This ribosomal protein can rescue ribosomes stalled on mRNAs lacking a termination codon. Every translational system runs into trouble when it encounters mRNAs that have lost the translation termina...

متن کامل

Human Cells Require Non-stop Ribosome Rescue Activity in Mitochondria

Bacteria use trans-translation and the alternative rescue factors ArfA (P36675) and ArfB (Q9A8Y3) to hydrolyze peptidyl-tRNA on ribosomes that stall near the 3' end of an mRNA during protein synthesis. The eukaryotic protein ICT1 (Q14197) is homologous to ArfB. In vitro ribosome rescue assays of human ICT1 and Caulobacter crescentus ArfB showed that these proteins have the same activity and sub...

متن کامل

Response to “Ribosome Rescue and Translation Termination at Non-standard Stop Codons by ICT1 in Mammalian Mitochondria”

Release factors (RFs) govern the termination phase of protein synthesis. Human mitochondria harbor four different members of the class 1 RF family: RF1Lmt/mtRF1a, RF1mt, C12orf65 and ICT1. The homolog of the essential ICT1 factor is widely distributed in bacteria and organelles and has the peculiar feature in human mitochondria to be part of the ribosome as a ribosomal protein of the large subu...

متن کامل

Ribosome release factor RF4 and termination factor RF3 are involved in dissociation of peptidyl-tRNA from the ribosome.

Peptidyl-tRNA dissociation from ribosomes is an energetically costly but apparently inevitable process that accompanies normal protein synthesis. The drop-off products of these events are hydrolysed by peptidyl-tRNA hydrolase. Mutant selections have been made to identify genes involved in the drop-off of peptidyl-tRNA, using a thermosensitive peptidyl-tRNA hydrolase mutant in Escherichia coli. ...

متن کامل

Identification of residues required for stalled-ribosome rescue in the codon-independent release factor YaeJ

The YaeJ protein is a codon-independent release factor with peptidyl-tRNA hydrolysis (PTH) activity, and functions as a stalled-ribosome rescue factor in Escherichia coli. To identify residues required for YaeJ function, we performed mutational analysis for in vitro PTH activity towards rescue of ribosomes stalled on a non-stop mRNA, and for ribosome-binding efficiency. We focused on residues c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 29  شماره 

صفحات  -

تاریخ انتشار 2010